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We investigats here, for a positive integer ¢, simuitaneous approximaticon of the
first 7 derivatives of a function by the derivatives of its Lagrange interpclant, and
then we augment this procedure by Hermite interpolation at the endpoints of the
interval, obtaining a great improvement in the quality of Anpron.mﬂ-l 1. in both
cases. we estimate the quality of simultaneous appro
of an asscciated Lagrange interpolation, and the estimates ar s valid for any
sequence of interpolations by polynomials of successiveiy higher :ieg ee. This com-
munication continues work begun by K. Balazs and gene recent work of
Muneer Yousif Elnour, who treats simultaneous approximation witlh nodes at the
zeroes of the Tchebycheff polynomials. Our efforts to obtain its which are inde-
pendent of the choice of nodes have also led to some interesting conseqguences of
a theorem of Gopengauz on simulianecus appmx.m.‘-.lon. € 1990 Academic Press, Inc.
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PREFACE
With few exceptions, existing results on simultaneous approximation of
a function and its derivatives by interpolation depend on a sysiem of nodes
generated by some particular method, such as piace”ner!- at the zeroes
of a sequence of orthogonal polynomials. While such procedures can give
good results, they are very inflexible, revealing little dbo;i what happens
on other systems of nodes. We investigate here, for a positive integer
simujtaneous approximation of the first g derivatives of a functicn
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the derivatives of its Lagrange interpolant, and then we augment this
procedure using Hermite interpolation at the endpoints of the interval,
obtaining a great improvement in the quality of approximation. In both
cases, we estimate the quality of simultaneous approximation in terms of
the norm of an associated Lagrange interpolation, and the estimates are
thus valid for any sequence of interpolations by polynomials of successively
higher degree.

We mention four recent contributions to our topic. This communication
first of all continues work of generalization begun in K. Balazs [1]. Second
Y. E. Muneer [7] has recently treated simultancous approximation with
nodes at the zeroes of the Tchebycheff polynomials. His analysis of the
augmented interpolation especially is quite serious and has challenged us to
undertake its generalization. Our efforts to obtain results which are inde-
pendent of the choice of nodes have also led to some interesting consequen-
ces of a theorem of Gopengauz [4] on simultaneous approximation.

The third recent contributor is J. Szabados [9], who has created a
system of nodes with some good convergence properties for simultaneous
Lagrange interpolation. His interesting construction has been a great
impetus for additional work on problems relating to simultaneous
approximation. Most recently, P. Runck and P. Vértesi [8] have dis-
covered a class of nodes with good convergence properties. We will further
describe these results at an appropriate point in our exposition.

INTRODUCTION

For Lagrange interpolation on the interval [ — 1, 1], we will assume that
nodes x,, .., x, are given satisfying — 1 <x, <..<Xx,<1. When such a set
of nodes is chosen by some prearranged scheme for each n,n=1, 2, ..., we
use the term system of nodes. The fundamental polynomials of degree n — 1
are Iy, ..., [,, satisfying /;(x;) =6, (Kronecker delta). A standard construc-
tion for the polynomials /; is to define

W,(x)=(x—x)(x—x3)-- (x—x,) (1)

and for i=1, .., n to set

L(x)=W,(x) [(x—x;) W,(x)]~" (2)

Lagrange interpolation is then defined by

Lfx)= Y f(x) (x) 3)

i=1
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for fin C[ — 1, 1]. It is easily seen that

the usual sup norm of C[ —1, 1] being used on the right. We also define,
for £ a2 non-negative integer,

7

I3 thig ‘
LEf(x)= Y, flx;} 1 (x), (4
i=1
where (k) signifies the kth derivative. We record the useful observation
n ’l n
ilk K s H o ! z
Z Sgn[li »(x)] li(les Z l!:l\“{)ls‘in' {J
li=1 b=
Quality of simultaneous approximation by any L, of the form {3} must
satisfy the following theorem, in which the value of [[L,! depends, cf
course, on the nodes x,, .., x,. We note that a system of nodes defines =

sequence of interpolation operators L,, and vice versa. For a function
which is continuous on [ — 1, 1], the notation w{g; 4} denotes the moduiu
of continuity of g and is described by

'J"Q

r,7

w(g:hy= sup [g(x)—g{yil.

x—vigh

We are now ready to state two theorems, which taken together will
describe the convergence properties of an arbitrary sequence of successive
Lagrange interpolations. The first theorem appears in Balazs [1].

THEOREM. Let g be a fixed positive integer, fin C9{ —1, 1], and {L,!
a seguence of Lagmnge interpolation operators, eack into space of polvio-
mials of degree n—1 or less. Then for —1<x<t and for i=0,..9

) — L f(x)] = Ofn' =) (1 = x7) 72 ol £95 1imy { L

and consequently

) = L9 f(x) = 00 =) (£19;

hoids on any compact subset of (—1,1).

To this result, one may add the following:



234 BALAZS AND KILGORE

THEOREM 1. Let g be a fixed positive integer, fin C'[ —1, 1], and {L, }
a sequence of Lagrange interpolation operators, each respectively into the
space of polynomials of degree n— 1 or less. Then for i =0, ..., q we have

|/ O0x) = L flx)] = O(n* ) o(f@; 1jn) [L, |,

whence L'"f converges umiformly 10 f" on [—111 if
n* = Ho(f9; 1/n) | L, || - 0.

This estimate is in particular valid at x=1 and at x= — L

Remarks. 1. The best possible choices of the nodes x,..x, for
Lagrange interpolation lead to |L,|=O(logn) (see Brutman [2] or
Vértesi [11] for some good estimates) as do other, near-optimal choices,
such as the zeroes of the Tchebycheff polynomial T, (x)=cos(n arc cos x),
and thus Muneer [7, Theorem 1.1] follows immediately, inserting log # in
place of | L, [l. We remark that, more generally, if a system of nodes is con-
structed by taking for each n the zeroes of the orthogonal polynomial of
degree n associated with a weight function w(x)=m >0, then ||L,| = O(n)
(Griinwald and Turan [5]). If o(x)= (1 —x)* (1 +x)¥, for a, > — 1, the
orthogonal polynomials thus generated are the classical Jacobi polyno-
mials, and one obtains on the associated system of nodes || L, | = O(log n)
if y=max(a, f)< —3, and ||L,| =O0(n"*'?) if y=max(x, f)>3 (Szegd
[10, p. 3387).

2. The result of Szabados [9] is that, on a set of nodes specially
constructed, it is possible to obtain

If9— L9 f] = 0(1) o(f; I/n) logn  as n— .

3. The result of Runck and Vértesi [8] improves our Theorem 1
considerably for certain classes of specially chosen nodes, for which they
have demonstrated

[fO— LS =0n =) o(f9 I/n)logn  for i=0,..,4q.

A DISCUSSION OF THE LAGRANGE-HERMITE INTERPOLATION

We may continue our investigation of simultaneous interpolation by
considering Hermite interpolation at the endpoints — 1 and 1, in addition
to usual Lagrange interpolation in the interior of the interval. Specifically,
we may let x,, .., x, be nodes such that — 1 <x, <..<x,<1, and we set
xo=—1and x,,,=1. We will assume that fis in C'[ — 1, 1] for some
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fixed integer ¢>0. The derivatives f*°, .., /"~ are then interpolateé at
the points 1 and — 1, where 2r=gq, if ¢ is even, and 2r=¢ + 1 if 2 is odd.
An interpolation operator H,, is then constructed which approximates
with a polynomial H,,f of degree at most m, where s =x — 1 + 2». Specifi-
cally,

m

in which the /; are the fundamental polynomials defined in {2 g,
k=0,..,r—1, Lne polynomials ry , and r, ., . are respectively defined by

FoilX ) =1, 4(x)=0 for j=1,..,n and ,r—1
Qi) _ .ty _ 5 I -
ri(—Bi=r!  (1)=04 for k=0, .71

r (Vy=r (= 1)=0 for i=0,.,r—k—1, k=0 ..r—1L (T}

An expiicit formula for the polynomials # . and r, ., may be givern in the
form

r—k—1i
Fox={1—x) W, (x) Y 814+t
i=0
r—k—1
. / (n~ 1.k} ¢ Y]
tl+1k"\“+x)r VVn{x) Z Czn Tl —x)
i=0

in which W, {x) is given in (1), and the coefficients may be computed
explicitly from the conditions listed in (7). However, these explicit formulas
will not be needed here.

For the mixed Lagrange-Hermite interpo'iatic' just described, our
results will be stated in Theorem 2, where a form of weighred interpolatior:
will also assume a position of importance. For {,, ..., [, as already defined,
we will let

|~1
-
[

=
2
oo

X/

and we note that

5 (=)l ,
[LXf =1 NG {6y
-ILn il !jglk!_x}/' :,{ )I!E (e
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The range of L} is the space of weighted polynomials of degree n—1 or
less, with weight (1 — x?)"2 The method of proof used in Kilgore [6] suf-
fices to show that this is a Bernstein—Erd0s optimal interpolation space.
We will show here (Corollary) that |L*| = O(log n) on the nodes situated
at the zeroes of the Tchebycheff polynomials.

THEOREM 2. For g a fixed positive integer, let f be in C/[ —1,1]. Let
{H,} be any sequence of modified Lagrange—Hermite interpolation
operators as described, {L,} the associated sequence of Lagrange interpola-
tion operators, and {L}} the associated sequence of weighted interpolation
operators. Then, for all x in [ —1, 1] and for i=0, ..., g:

(@) For g even and m=n—1+gq,
|fO(x) — HO f(x)]| = O(n'~9) (£ 1/n) |L,,Y.

Uniform convergence of H'f to f© occurs for i=0, .., q provided that
n' = w(f51/n) |L,| - 0.
(b) For g odd and m=n+gq,

|fO0) = HL) f(x)| = 0(n' "' =) (£ 1/n) |IL,, .

Uniform convergence of HVf to 0 occurs for i=0, ..., q provided that
n' =T o(f9; 1n) ||L, || - 0.

(c) For q odd and m=n+ q, a sharper result than (b) is
|/ D(x) = HEf(x)] = O(n' =) o(f9; )L, | + ILX]).

Uniform convergence of H'f to f' occurs for i=0, .., q provided that
o(f5 m)(IL, || + |L¥i) 0.

For estimating the error in simultaneous approximation by Lagrange
interpolation, an apparent discrepancy exists between Theorem 1 (global
result) and Szabados [9] (particular result). Here, in contrast, the par-
ticular result is that of Muneer [7, Theorem 1.27], which we list below as
a corollary of Theorem 2. In addition there are many other choices of
systems of nodes which give | L, | = O(logn) besides the ones used by
Muneer (cf. Remark 1), and none which gives an essentially slower rate of
growth. Our theorem is more flexible in its potential for application, but
Muneer gives rates of convergence which apparently cannot be improved.

CoroLLARY [7, Theorem 2.17 If the nodes of interpolation for L, in
Theorem 2 are based at the zeroes of the Tchebycheff polynomial
T,(x)=cos(narccos x), then |IL,|=0(logn) and |L¥| =0O(logn), and
these values may be used in Theorem 2.
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ExisTING RESULTS
Our proofs will be based on the Markov-Bernstein inequality and on a
theorem of Gopengauz [4] which states the existence of certain polyno-

mials of approximation with rather useful properties. We list these results.

MaRKOV INEQUALITY. Let p, be a poiynomiai of
O(1)yr¥ ip, |, the norm being the usual

-
1 i 1

interval { — 1,171

BERNSTEIN INEQUALITY. (a) Let T, be a trigonemetric polynomial of
degree # or less. Then | T, <n |T,i.
‘b‘- For p, a polynomial of degree 1 or less, and for any x in
— 1, 1) 1pP(x) = 0() (1 —x?) "2 | p, .

THEOREM OF GOPENGAUZ. Let q be a fixed non-negative integer, and lei |

be in C[ — 1, V. Then, for every m=4q+ 5, there exists a polynomial G,
of degree ar most m such that, for i=0,1, .,q and for xin { — 1,1},

)-GO (x) =01 m =7 (1 — x99 72 ot f19; Lm).

Souvie CONSEQUENCES OF THE MARKOV-BERNSTEIN INEQUALITIES

The Markov and Bernstein inequalities in conjurnction imply the follow-
ing simple and useful inequalities, of which [7, Lemma 3.1] is a particular
case for X =2r, for successive derivatives of a polynomial with muliipie
zeroes at 1 and — 1. We list this result as Lemma !.

~

LemMa 1. Consider for fixed non-negative » ¢ polynomial of the form

(1—x*) g.(x), where g, is a polynomial of degree n or less. Then, for
k=0, .., 2r and with O(1) depending only on r, and for |xj <1,
r 2 (k) L3N RTINS
IT(1 = %) g,(x)]® = 0(1) n* g, . {10)

Proof. We first write the derivative on the left in expanded form

k

- ,\
(1= g,(0)]9= ¥ (‘) [

i=0

where (¥) is the binomial coefficient. For convenience, we will write
i PRy e ST i) —
(L= Xy gl(x)) = 4i(x).

Since £ < 2r, and r is fixed, it will be sufficient to show for each { in the
sum that 4,(x)=0(n*) ||g,|. To see this, we consider three possibilities:
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(a) r—k+1i<0. This implies that i <k/2, and the Markov inequality
implies that A,(x)=0(n*) | g, |, which is sufficient because 2i < k.

(b) r—k+i=i/2. In this case, it can be said by use of the Bernstein
inequality that

A; () S Cl(1=x)2 g (x)| = 0(n') | gall,

which suffices because i < k.

(c) O0<r—k+i<if2. One begins by noting that, in this case,
i/2 <k —r, whence 2/ < k. Therefore

A,-(X)S Cll(l _XZ),-vk+ig£I[)(x)l — 0(1)n2;-~2k+2i “g(i~2r+2k72i) ,|,

n

using the Bernstein inequality. Now, using the Markov inequality,

’12r72k+2i ||g(i—2r+ 2k — 2i) I — 0(1)(n2r72k+2i+2i~4r+4k74i) ”g |
=0(1)(n* ") |l g, | = O(n*) | g,I,
this last following because k < 2r, and our proof is completed.

Remark on Lemma 1. It is immediate from (10) that, under the same
hypotheses, one has for k=1, .., 2r—1 and for |x| <1 that

IL(1 =) g, ()] = 0(1) i~ 1|1 = x*) g, (x) — 2rxg, (). (11)

One simply differentiates once and then applies (10).

Also based on the Bernstein inequality is the following result.

LEMMA 2. Assume that g, is a polynomial of degree n—1 or less on
[—1, 1] Then for |X| <1

I(1—x2) g, () < | gall +nl(1 ~ x*)'2 g, (). (12)

Proof. We write, using the substitution x=cos? the expression
(1-x?)*2g,(x) in trigonometric form, and invoke (a) of the Bernstein
inequality, obtaining

| — (sin? £) g/, (cos £) + (cos t) g, (cos t)|| < ni(sin ¢) g, (cos 1)
and, using the triangle inequality and back-substitution, we obtain
11— x?) g, ()| = l1xga (x)| S mll(1 —x?)"2 g, (x)1,

From this our result follows.
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A REMARK ON THE (GOPENGAUZ THEOREM

The following difference inequalities are an immediate consequence of
the theorem of Gopengauz and will be used in proving Theorem 2, w
when g is odd, one encounters /= 1. For /=0, the estimate has previousiy
been used by Muneer and Szabados.

CORCLLARY OF THE GOPE\GAUZ THEOREM
and let [ be in C[ —1.1]. For an arbz'rar‘
Gopengauz polynomial of f Then fori=0,..¢q

Hflx)=G,(x)"

S

Proof.  Assume that x is such as to cause the indicated norm to ¥
attained. Our conclusion certainly holds if x is between the values of, for
example. —27"? and 27! There is also nc problem if x is at 1 or —
in view of the fact that f(x)=G!)(x) for x=1 or x= —1 and i=0, ..,
g — 1, as an immediate consequence of the theorem of Gopengauz. Assume,
therefore, without loss of generality, that 27! ? < x< 1. Then repeated use
of Cauchy’s lemma (used in the standard proof of "'Hospital's rule}
demonstrates the existence of y satisfying x < 3 < 1, such that

PROOF OF THEOREM 1.

For n > 4q+ 5, g a fixed integer, let G, be the poiynomial of approxima
tion to f guaranteed by the theorem of Gopengauz, observing thai, by
the properties of L, as a linear projection operator, L'" G, =G’
LW L0G =L"(f-G,) for i=0, .., q are algebraic identitics. "Ehus,
for i=0. ... g and for arbitrary x in [ — 1, 13, we have

L Fx) = LOFOOL < | f %) = GO () + 1LY

Analysing separately the two quantities on the right, we note, using the
theorem of Gopengauz and the Markov inequality, that the second of the
two satisfies
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ILLI)(f_ Gn )(x)l < :!f_ Gn || Z lljU) (X)|
j=1

=0(1)(n ") w(f'9; 1/n) nZ'

=0(m* =) o(f'7; 1/n) IIL,,,I,
in the estimation of which the inequality (5) has played an implicit part. By
dilution of the theorem of Gopengauz, we have as well

|fO00) = G2 () = 0" =) (9 1/n) |L, |,

and part (a) of Theorem 1 is completed; the statement concerning
convergence clearly follows as well.

ProoF oF THEOREM 2

We may begin in a fashion similar to that used in the proof of
Theorem 1. Let G,, be the Gopengauz polynomial of degree at most m,
where, recall, m=n—1+gq if g is even and, m=n+q if ¢ is odd. We then
employ the triangle inequality, obtaining

|fO0) = H) SO0l < | fOx) = G + [ HL) (F= G )x). - (14)

Since the first term on the right clearly satisfies the conclusions of our
theorem, we will confine our attentions to the second. Writing that term

explicitly, we have
n (1 Z)r :|(i)l
. (1
=| £ vt =G| i | a9

where r=g¢/2 if ¢q is even, and r=(g+1)/2 if 4 is odd. We have, after
regrouping in the expression on the right,

n 3 G i
Y [f_(l—(_)] [(1—x?)"L(x)]1?]. (16)

|H)(f— G )(x)

|H (f— G )(x)l =

= ( 2);
And now we may make the estimate
. | r .
A e e AR A LI )
I =1

J
If g is even, the right side of this inequality is

I‘f(X) X))

Z)qZ

PR 11 (18)
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the respective components of {18) to reach

[0 NYo{f % Un)]- [OY LA T= O ¢ wl £ 1iny 1L,
This completes the proof of Theorem 2, part {z).

f g is odd, then the right side of (15} 1s
P [y —Glx,) - .
[ AR EALLANE A mr‘(1+i 27 Ay £1GY
) 2:, ¥ L3 4+"7J[(1 X ‘ji\“'}_f i Vi
| i ("‘ - "j ) i

Now we may use the difference~-quotient estimate {13} {for i=1) and the

Markov-Bernstein inequality in the form {(!1} on tha
ponents of this expression, following with {3}, and we obtain

[0 S o 19 U] - [0 E =00 v 190 Liay UL L
This concludes the proof of Theorem 2, part (b}
to

For Theovem 2, part (¢}, we should return
neans of {11} and (5),

{19}, where we obtain, by

B~ Gl <00 | 3
1

1

+O Y

of {20}, we have, :

Now, analysing the first of the sums on the right
(12), (13}, and (5),

b S X)) =G x) ] [ =X Dl
O 1!\;( l mjl! 7-~."!
v ’lg :Z;i (1*3{,’, )q_-z I | (1"\'}}"'“ !l

B & %j‘(x'.}*(;mi'("j? Y
<O ) ” Y, ;7'1‘]—-37;:7“’51 M3
L=l :
| f .lf\xj)“'Gm(’(,)l Hi__,{z;;-z‘[‘ :!_?7
+# ,! :gii; \/I__X}‘,qz l }}(1__ Y;’l\}!_'l !,g/“)gl(j

PISSLALERD I

- L i J
£ O ?!*(1 PEITERTES MO

H J=1
e =G, & Xyt
<~ Ofn' L___.___...__. e X
e R P X2

11\ 1 N o B
i1 gy D S Ten 12 SR BT o ]
=0(m) " =] (SOl A+0EM =) ol f = TILE
n/ \ By RV AN iy
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By a similar argument, also using (13), the second of the sums on the right
of (20) is dominated by

o 1) = Gn(x) |, o (DT ]

This concludes the proof of Theorem 2, part (c).

Proof of the Corollary. The norm |L,| is well known to satisfy
O(log n) on the system of nodes generated by the Tchebycheff polynomiais
for n=1,2,.. by T,(x): =cos(narccos x). It is necessary only to show
that the same asymptotic estimate is valid for |L}|. For convenience, we
begin by reviewing some of the basic, well-known facts which can be stated
about the Tchebycheff polynomials and about this weighted interpolation.
First of all, it is advantageous in this case to number the nodes for each n
in reverse order, beginning at the right of the interval [ —1, 1] instead of
the left, and then we have the explicit formulation that for j=1,...n

2j—1
XJ-:COS n .

We then note that the function W, of (1) takes on the form T,(x), and
thus for each n and for j=1,2, ., n

| TI’I (xj )I = ﬂ/’l(l —_ xj )1:2_

The functions /,, ..., [, are defined for each » as in (2), and the following
estimate is also known (Fejér [3]) to hold independently of =,

Y ((x))1<2,
j=1

from which we may conclude in particular, setting x,: =l and x,,, ;1= —1
for convenience in what follows, that for any x in [ — 1, 1], for any », and
for any j=1,...n—1, [[(x)| +1];,,(x)| = O(1). A last observation is that,
if x is any fixed number in ( — 1, 1], there is for each » an integer k& (which
depends on #n) such that x lies in [x, ., xr ] (we will assume for the sake
of unicity that if x is an endpoint of such an interval, it will be the
point x,). For this %, the following estimates follow from fundamental
trigonometric identities:

= x| ~(n7?) ke —jl - lk+j—1]  for j<k
Ixe—x;| ~(n=2) | j—k~1|-]j+k| for j>k+1.
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We now show that, for any fixed but arbitrary x in [ — 1. 1],
Yz
= i 1
/ i/j(x‘,:!={}(§og %)
/_1 \‘__Y /
To this end, we note that the expression is zero if x=1 or x= — 1, and s¢

we may assume that x lies in the open interval Moreovsr, we note that the

expression is an even function of x, and so we may assume with no foss of

generality that x lies in { — 1, 0], in which case we clearly have
lim sup n/k = 2.

We now combine all of the preceding remarks in

7 /1__x2 1.2
e j =0 %

jer AT

—o()+ ¥

Jj#k o -
JEk 1
In turn, we may now state that
(1 12| !
¥ (1 =) T, (%) 1( i
JEk nlx—x] 1>k+1 2, — ;1
ik +
1 2
o()- Y. Z - O(1)
= H fp— - -+ il
AT S RISt
n[—k—l 1 n 1
o[ Lt 3
jou k=gt ek
n 1
=0(1) 3 —=0(logn).
j=1/

This concludes the proof of the Coroliary to Theorem Z.
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