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We investigate here, for a positive integer q: simultaneous approximation of the
first q derivatives of a function by the derivatives of its Lagrange interpclant, area
then we augment this procedure by Hermite interpolation at the endpoints of tile
inter':al, obtaining a great improvement in the quality of approximation. In both
cases. we estimate the quality of simultaneous approximation iIi terms of the ncl"IT'
of an associated Lagrange interpolation, and the estimates are thus valid for any
sequence of interpolations by polynomials of successively higher degree. This com
munication continues work begun by K. Balazs and generaiizes a 'ecent work of
'v1:meer Yousif Elnour, who treats simultaneous approximation with nodes at the
zeroes of the TchebychelT polynomials. Our efforts to obtain results which are inde
pendent of the choice of nodes have also led to some interesting consequences of
a theorem of Gopengauz on simultaneous approximation. (: L990 Academic Press, Ir.c.

PREFACE

With fe''v exceptions, existing results on simultaneous approximation of
a function and its derivatives by interpolation depend on a system of nodes
generated by some particular method, such as placement at the zeroes
of a sequence of orthogonal polynomials. While such procedures can give
good results, they are very inflexible, revealing little about what happens
on other systems of nodes. We investigate here, for a positive integer ::j,

simultaneous approximation of the first q derivatives of a function oy
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232 BALAZS AND KILGORE

the derivatives of its Lagrange interpolant, and then we augment this
procedure using Hermite interpolation at the endpoints of the interval,
obtaining a great improvement in the quality of approximation. In both
cases, we estimate the quality of simultaneous approximation in terms of
the norm of an associated Lagrange interpolation, and the estimates are
thus valid for any sequence of interpolations by polynomials of successively
higher degree.

We mention four recent contributions to our topic. This communication
first of all continues work of generalization begun in K. Balazs [1]. Second
Y. E. Muneer [7] has recently treated simultaneous approximation with
nodes at the zeroes of the Tchebycheff polynomials. His analysis of the
augmented interpolation especially is quite serious and has challenged us to
undertake its generalization. Our efforts to obtain results which are inde
pendent of the choice of nodes have also led to some interesting consequen
ces of a theorem of Gopengauz [4] on simultaneous approximation.

The third recent contributor is J. Szabados [9], who has created a
system of nodes with some good convergence properties for simultaneous
Lagrange interpolation. His interesting construction has been a great
impetus for additional work on problems relating to simultaneous
approximation. Most recently, P. Runck and P. Vertesi [8] have dis
covered a class of nodes with good convergence properties. We will further
describe these results at an appropriate point in our exposition.

INTRODUCTION

For Lagrange interpolation on the interval [ -1,1], we will assume that
nodes x I' ... , x" are given satisfying - 1~ XI < ... < x" ~ 1. When such a set
of nodes is chosen by some prearranged scheme for each n, n = 1, 2, ..., we
use the term system of nodes. The fundamental polynomials of degree n - 1
are 11, ..., I", satisfying Ii (Xj ) = J if (Kronecker delta). A standard construc
tion for the polynomials Ii is to define

(1)

and for i= 1, ..., n to set

Lagrange interpolation is then defined by

L"f(x) = L f(x i ) li(x),
i=1

(2)

(3)
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.for f in C[ - 1, 1]. It is easily seen that

n
"L" i,,, '1 (0 \[ ';
i n I == Ii .i...J, Iii X JI ! ~

,I!~ ,
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the usuai sup norm of C[ - 1, 1] being used on the right. We also define,
for k a non-negative integer,

i=l

'where (k) signifies the kth derivative. We record the useful observation

I f sgn[i~kl(x)] ((x)1 ~ f li;(x)j ~ ,:L,,!i.
[;~ 1 ! ;~ l

(5)

Quality of simultaneous approximation by any L
il

of the form (3) must
satisfy the following theorem, in which the value of iiL,,:j depends, cf
;:;ourse, on the nodes Xl' ... , X n' We note that a system of nodes defines a
sequence of interpolation operators L n , and vice versa. For a function g
which is continuous on [-1, 1J, the notation w(g; h) denotes the modulus
of ,;ontinuity of g and is described by

w(g: h) = sup ig(x) - g(y)!.
~x-y[ ::::;11

We are now ready to state two theorems, which taken together will
describe the convergence properties of an arbitrary sequence of successive
Lagrange interpolations. The first theorem appears in Balazs [1].

THEOREM. Let q be a fixed positive integer, f in Cq
[ - L 1J, and {L," ,\

a sequence of Lagrange interpolation operators, each into space of po(vno
mials of degree n - 1 or less. Then for - 1 < x < 1 and for i = 0, "'; q

If{i)(X) - L~:·) j(x)i = O(n i - q)( 1- x 2 ) -£.2 w(f·(q); l/n) i: L n !i~

and consequently

holds on any compact subset of ( - 1, 1).

To this result, one may add the following:

640.60 2-8
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THEORHf 1. Let q be a fixed positive integer,f in Cq
[ - 1, 1J, and {L" }

a sequence of Lagrange interpolation operators, each respectively into the
space of polynomials of degree n - 1 or less. Then for i = 0, ..., q we have

whence L~) f converges uniformly to f U) on [ - 1, 1J if
n2i

- 2Qw(f(q); l/n) II L" Il -+ O.

This estimate is in particular valid at x = 1 and at x = - 1.

Remarks. 1. The best possible choices of the nodes Xl' ... , x" for
Lagrange interpolation lead to IIL"II =O(logn) (see Brutman [2J or
Vertesi [11 J for some good estimates) as do other, near-optimal choices,
such as the zeroes of the Tchebycheff polynomial T,,(x) = cos(n arc cos x),
and thus Muneer [7, Theorem 1.1 J follows immediately, inserting log n in
place of IlL" II. We remark that, more generally, if a system of nodes is con
structed by taking for each n the zeroes of the orthogonal polynomial of
degree n associated with a weight function w(x)~m>O, then IlL,,11 =O(n)
(Grunwald and Turin [5J). If w(x) = (1- xt (l + x)/3, for r:x., fJ> - 1, the
orthogonal polynomials thus generated are the classical Jacobi polyno
mials, and one obtains on the associated system of nodes IlL" 11= O(log n)
if y=max(r:x.,fJ):( -!, and IIL"I'=0(n}'+L'2) if :'=max(et,fJ»! (Szego
[10, p. 338J).

2. The result of Szabados [9J is that, on a set of nodes specially
constructed, it is possible to obtain

as n -+ Xi.

3. The result of Runck and Vertesi [8J improves our Theorem 1
considerably for certain classes of specially chosen nodes, for which they
have demonstrated

for i=O, ..., q.

A DISCUSSIO!'< OF THE LAGRA"IGE-HERMITE INTERPOLATIO"l

We may continue our investigation of simultaneous interpolation by
considering Hermite interpolation at the endpoints - 1 and 1, in addition
to usual Lagrange interpolation in the interior of the interval. Specifically,
we may let XI' ..., x" be nodes such that - 1 < XI < ... < X" < 1, and we set
X o= - 1 and x" + 1= 1. We will assume that f is in Cq

[ - I, 1J for some
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fixed integer q > O. The derivatives pOI, ...,pr- i I are then interpolated a,
the points 1 and - 1, where 2r = q, if q is even, and 2r = q + 1 if q is odd.
An interpolation operator H m is then constructed which approximates f
with a polynomial H",f of degree at most »1, where m = !'i-I -i- 2r. Specifi-
cally~

"-1 r-1

k=O k=O

"
+ "f(x.'(1_x·2 )-r('1_y2\rfi x'L . J) . J '. .-! 'J\ ),

f{..\".j i

III which the lj are the fundamental polynomials defined in (2), ane, raf
k = 0, ... , ,. - 1, the polynomials rO. k and i"" ~ l.k are respectively defined by

for i=O, ..., r-k- 1, k=O, ..., 1'-1. (7)

for i, k = 0, ... , r - 1

for }=1, ... ,n and k = O~ ... , r-1

An explicit formula for the polynomials rO.k and rn~ l.k may be giver. iI: the
form

r-k-i

rO. k =(1-x)'W,,(x) I c~O.ki(l+X)k~l

i=Q

r-k-l

r"+l.k= (1 +x)' W"lx)

In which W" (x) is given in (l), and the coefficients may be computed
explicitly from the conditions listed in (7). However, these explicit formulas
will not be needed here.

For the mixed Lagrange-Hermite interpolation just described, our
results will be stated in Theorem 2, where a form of weighted interpolatior:
will also assume a position of importance. For I" ..., in as already defined,
we williet

(8)

and we note that

(9)
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The range of C: is the space of weighted polynomials of degree n - 1 or
less, with weight (1 - x 2

) 1:2. The method of proof used in Kilgore [6] suf
fices to show that this is a Bernstein-Erdos optimal interpolation space.
We will show here (Corollary) that :IL: II = O(log n) on the nodes situated
at the zeroes of the Tchebycheff polynomials.

THEOREM 2. For q a fixed positive integer, let f be in Cq[ - 1, 1]. Let
{Hm } be any sequence of modified Lagrange-Hermite interpolation
operators as described, {Ln } the associated sequence of Lagrange interpola
tion operators, and {L,;} the associated sequence of weighted interpolation
operators. Then, for all x in [ - 1, 1] and for i = 0, ..., q:

(a) For q even and m=n-1 +q,

Uniform convergence of H~)f to fUI occurs for i = 0, ..., q provided that
ni- q w(f(q); l/n) IILn II - 0.

(b) For q odd and m=n+q,

IfU)(x)-H:~)f(x)1=O(ni+1-q)w(f(q); l/n) IILnll.

Uniform conrergence of H~)f to f U) occurs for i = 0, ..., q provided that
ni+1-qw(pq); l/n) IILnll-O.

(c) For q odd and In = n + q, a sharper result than (b) is

Uniform convergence of H:~)f to fUI occurs for i = 0, ..., q provided that
w(f(q); l/n)(IILn ll + !IL,;il)-O.

For estimating the error in simultaneous approximation by Lagrange
interpolation, an apparent discrepancy exists between Theorem 1 (global
result) and Szabados [9] (particular result). Here, in contrast, the par
ticular result is that of Muneer [7, Theorem 1.2], which we list below as
a corollary of Theorem 2. In addition there are many other choices of
systems of nodes which give IILn II = O(log n) besides the ones used by
Muneer (cf. Remark 1), and none which gives an essentially slower rate of
growth. Our theorem is more flexible in its potential for application, but
Muneer gives rates of convergence which apparently cannot be improved.

COROLLARY [7, Theorem 2.1] If the nodes of interpolation for L
II

in
Theorem 2 are based at the zeroes of the Tchebycheff polynomial
Tn(x) = cos(n arc cos x), then I!Ln!1 = O(1og n) and HL::I = O(log n), and
these values may be used in Theorem 2.
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EXISTING RESCLTS

237

Our proofs will be based on the Markov-Bernstein inequality and on a
theorem of Gopengauz [4] which states the existence of certain polyno
mials of approximation with rather useful properties. We list these results.

MARKOV IXEQCALITY. Let .on be a polynomial of degree n or less. Then
liP::)!i =0(1)n2

; !ip"I!, the norm being the usual sup norm, taken on the
imerral [ - 1, 1J.

BER:\'STEIN INEQUALITY. (a) Let Tn be a trigonometric polynomial of
degree n or less. Then [I T;z il :(; n II Tn Ii.

(bi For .on a polynomial of degree n or less, and for any x in
( - 1, 1), jp::'(x)1 = 0(1) 11;(1- x 2

) -;2 lip" Ii.

THEOREM OF GOPENGAUZ. Let q be a fixed non-negative integer, and lei f
b- . Cq r 1 11 T' I: 4 _. . , . I r-e In L - , ... ' i nen, Jor every m;::: q +), tiJefe eXists a pOlynomial Un

""'''.r! 01'P t.,. '1 ~ • 1 th .J. I'. .. - 0 1 1d l' r Y ':1'1 f 1 11UJ V.e"" _e a..1,OSI m Sticn , ai, JOI 1- ", ..., q aI. _.! O. _. z•• L - " • J,

Sm,rr: CO!';SEQUE:--;CES OF THE MARKOV-BERNSTEI:\' I~EQCALITIES

The Markov and Bernstein inequalities in conjunction imply the follow
ing simple and useful inequalities, of which [7, Lemma 3.1] is a particular
case for k = 21', for successive derivatives of a polynomial with multiple
zeroes at 1 and - 1. We list this result as Lemma 1.

LEMMA 1. Consider jar fixed non-negatire r a polynomial of the form
(l-x2

)' gn(x), where gn is a polynomial of degree n or less" Then, for
k = 0, ..., 2 I' and \vith O( 1) depending only on r, and for !xl :(; 1,

(' 10)

Proof We first write the derivative on the left in expanded form

k (' \
r(1_y2)rg (X)'](k l =" K). [(1_ y2 \r:(k-il-U){v\
L \""'-"''' n L \ : o/~ J .J b n \A h

i=O \ l

where (~) is the binomial coefficient. For convenience, we \'tiill write
:[(1- x 2n ik -- il g~)(x)1 = A;(x).

Since k:(; 2 r, and r is fixed, it will be sufficient to show for each i in the
sum that A;(x) = O(nk

) !I gn il. To see this, we consider three possibilities:
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(a) r - k + i ~ O. This implies that i ~ k12, and the Markov inequality
implies that A i(x)=0(n 2i ) Ilg"il, which is sufficient because 2i~k.

(b) r - k + i ~ il2. In this case, it can be said by use of the Bernstein
inequality that

which suffices because i ~ k.

(c) 0 < r - k + i < i/2. One begins by noting that, in this case,
i/2 < k - r, whence 2 i < k. Therefore

Ai(x) ~ Cil(l-x2r~k+ig~,i)(x)1 = 0(1) n2r-2k+2i Ilg~i-2r+2k-2i) ;1,

using the Bernstein inequality. Now, using the Markov inequality,

n2r-2k+2i Ilg~-2r+2k-2i)1 = 0(I)(n2r-2k+2i+2i-4r+4k-4i) Ilg" 'I

this last following because k < 2r, and our proof is completed.

Remark on Lemma 1. It is immediate from (10) that, under the same
hypotheses, one has for k = 1, ..., 2r - 1 and for Ixl ~ 1 that

1[(1- x 2)' g" (x)] (k)j = O( 1) nk- 111 (1 - x 2)g~ (x) - 2rxg" (x) II. (11)

One simply differentiates once and then applies (10).

Also based on the Bernstein inequality is the following result.

LEMMA 2. Assume that g" is a polynomial of degree n - 1 or less on
[-1,1]. Thenfor IXI ~ 1

(12)

Proof We write, using the substitution x = cos t, the expression
(1_X

2
)1.'2 g,,(x) in trigonometric form, and invoke (a) of the Bernstein

inequality, obtaining

II - (sin2 t) g;, (cos t) + (cos t) g" (cos t) II ~ n 'I (sin t) g" (cos t) II

and, using the triangle inequality and back-substitution, we obtain

From this our result follows.
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A RHIARK 00: THE GOPE0:GACZ THEOREM
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The following difference inequalities are an immediate consequence 01

the theorem of Gopengauz and will be used in proving Theorem 2, where,
when q is odd, one encounters i = 1. For i = 0, the estimate has previously
been used by Muneer and Szabados.

COROLLARY OF THE GOPE"'GAUZ THEOREM. Let q be a positive integer,
and let f he in C q

[ - 1, 1]. For an arbitrary in> 4q -7 5, let Gm be the
Gopengauz polynomial of! Then for i = 0, ..., q, and for !xi :( L Gm satisfies

(13)

Proof Assume that x is such as to cause the indicated norm to be
attained. Our conclusion certainly holds if x is between the values of, for
example, - 2 -1,2 and 2 -12. There is also no problem if x is at 1 or - L
in view of the fact that f(i)(x) = G~:/ (x) for x = 1 or x = - 1 and i = 0, ....
q - 1, as an immediate consequence of the theorem of Gopengauz. Assume,
therefore, without loss of generality, that 2- 1

2 < X < 1. Then repeated use
of Cauchy's lemma (used in the standard proof of l'Hospital's rule)
demonstrates the existence of y satisfying x < y < L such that

PROOF OF THEOREM 1.

For n;::;:' 4q + 5, q a fixed integer, let G n be the polynomial of approxima
tion to f guaranteed by the theorem of Gopengauz, observing that, ~y

the properties of L" as a linear projection operator, L;:I On = G;:; and
L:')f-L~'G,,=L~)(f-G,,)for i=O, ... , q are algebraic identities. Thus,
for i = 0, ... , q and for arbitrary x in [ - 1, 1], we have

Analysing separately the two quantities on the right, we note, using the
theorem of Gopengauz and the Markov inequality, that the second of the
two satisfies
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n

IL~)(f-G,,)(x)I';:;;; !If-G" II I 1!y)(x)1
;~ 1

= O(l)(n-q) w(f(q); 1/n)(n2i
) II .f Ifj(x)ll!

; .I~l ,I

=O(n 2i
-

q) w(f(q); l/n) IlL" ,I,

in the estimation of which the inequality (5) has played an implicit part. By
dilution of the theorem of Gopengauz, we have as well

If(i)(x) - G~,i) (x)1 = O(n i
-

q) w(f(q); l/n) 'IL" !I,

and part (a) of Theorem 1 is completed; the statement concerning
convergence clearly follows as well.

PROOF OF THEOREM 2

We may begin in a fashion similar to that used in the proof of
Theorem 1. Let Gm be the Gopengauz polynomial of degree at most m,
where, recall, In = n -1 + q if q is even and, m = n + q if q is odd. We then
employ the triangle inequality, obtaining

If(i)(x) - H~)f(x)1 ,;:;;; If(i)(x) - G~)(x)1 + IH~)(f- Gm )(x)l. (14)

Since the first term on the right clearly satisfies the conclusions of our
theorem, we will confine our attentions to the second. Writing that term
explicitly, we have

where r = q/2 if q is even, and r = (q + 1)/2 if q is odd. We have, after
regrouping in the expression on the right,

And now we may make the estimate

If q is even, the right side of this inequality is
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(l9)

and we may use the difference-quotient estimate (13) (with i = 0) and the
Markov Bernstein inequality in the form (10) followed by the use of (5! or,
the respective components of (18) to reach

[O( 11--
q) w(f(q); lin)] . [0(11 1) !iL" II ] =G(n i 'i) W(j\'!i; lin) 1L n 'i-

This compietes the proof of Theorem 2, part (a I.
ff q is odd, then the right side of (15) is

( II -' f( ) G ' ) j- :! '\ lJ x,- m(Xj, [(l_x<)(<I+l)"flx)Wi!.
I L.. , (! _ .,~ ')(q + 1;'2 'i ), J ;
1 j= t L.... ~'\j i

Now we may use the difference-quotient estimate (13) (for i = 1) and the
Markoy-Bernstein inequality in the form (It} on the respective com
ponents of this expression, following with (5), and we obtain

This condudes the proof of Theorem 2, part (b),
For Theorem 2, part (c), we should return to U9), where we obtain, by

means of (il) and (5),

;

. \I/\x)! i/'. (20),

Now, analysing the first of the sums on the tight of (20), \.ve have, '-ising
(12), (13), and (5),

, n I f( ') G ( ) I I ( 1 "j i' , I I'
O · "'-1,\ I, '\ 1_ Xi - m x j I I -:c -jtx,lll

(n ) Ii L.. ' 1 ,'2 " i 1 '" I I
I .. 1 (l-x~)q "(l-x~)'~ i
\ ) ~~ 1 I .! ' I. J ' t :

,i'\!~('x)-G IX)!,I ' tl !tl __ X 2 \IZ, Of _I) , m \. , ! ,,\. f I I)
-:- .n " '1 2)'12 /. 'I L., 1('1 2 ,;,'2 'i"X;i t - X, I, I j ~ I - Xi }

; '.-; (1 ')'1 -- I (r,', 1\, " " i 1 q=OpI)' '<\- (f) j,q,; -) i'L"li + U(fl) - (j)

\H/ \ tlJ n
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By a similar argument, also using (13), the second of the sums on the right
of (20) is dominated by

O(n i - I ) I! f(x) - Gm(x) I'II'L 1= O(n i - I )' . (!)q-I W(flq).~) IlL II.
'j(1_x2 )(q+I):2, ", 11 '11"

This concludes the proof of Theorem 2, part (c).

Proof of the Corollary. The norm IlL" 'I is well known to satisfy
O(log n) on the system of nodes generated by the TchebychefT polynomials
for n = 1, 2, ... by T" (x): = cos(n arc cos x). It is necessary only to show
that the same asymptotic estimate is valid for IIL/~ II. For convenience, we
begin by reviewing some of the basic, well-known facts which can be stated
about the TchebychefT polynomials and about this weighted interpolation.
First of all, it is advantageous in this case to number the nodes for each n
in reverse order, beginning at the right of the interval [ - 1, 1] instead of
the left, and then we have the explicit formulation that for j = 1, ..., n

We then note that the function W" of (1) takes on the form T,,(x), and
thus for each n and for j = 1, 2, ..., n

The functions II, ..., In are defined for each n as in (2), and the following
estimate is also known (Fejer [3]) to hold independently of n,

n

L (lj(x))2~2,
j= I

from which we may conclude in particular, setting X o: = 1 and x" + I : = - 1
for convenience in what follows, that for any x in [ - 1, 1], for any n, and
for any j= 1, ..., n-1, Ilj(x)1 + Ilj+l(x)1 =0(1). A last observation is that,
if x is any fixed number in ( - 1, 1], there is for each n an integer k (which
depends on n) such that x lies in [Xk+I' xd (we will assume for the sake
of unicity that if x is an endpoint of such an interval, it will be the
point Xk)' For this k, the following estimates follow from fundamental
trigonometric identities:

IXk-x) _(n- 2
) Ik-jl·lk+j-11

Ixk-xjl- (n- 2
) Ij-k-11·li+kl

for j < k

for j>k+ 1.



se"fULTA"iEOUS APPROXIMAnON OF DERIVATI\'ES

We now show that, for any fixed but arbitrary x in [ - L 1J,

To this end, we note that the expression is zero if x = 1 or x = - 1, and sa
we may assume that x lies in the open interval. Moreover, we note that the
expression is an even function of x, and so we may assume with no loss of
generality that x lies in ( - 1, 0], in which case ,ve clearly have

lim sup nik = 2.

We now combine all of the preceding remarks in the following estimates:

=0(1)+ I
j#k

j#k-l

In turn. we may now state that

I
;-:/=k

j*k+l

1 n2 1 n2

= Oil).~ '" ' 0(1 \ . .:. \' ---'-'---
\ "L.. Ik _ '1 . 11 • _ 11 T . !" L. !; _ I _ 11 . ;; . V

"j<k } IK+.l -; "j>k-l!J K ~, LJT.·.;

nr k
-

1 1 I
= 0(1 ',. - L '" --+)' ,,:,

' k /::llk-jI j~'i:~2Ij-k-11J

fl 1
= O( 1) I -; = O(log 11).

j= 1 J

This concludes the proof of the Coronary to Theorem 2.
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